Indian Statistical Institute, Bangalore Centre B.Math.(Hons.)II Year-2013-14, First Semester Optimization

Final Exam Instructor: P.S.Datti **NOTE:** Solve all the questions. WRITE NEATLY. 13 Nov 2013, 10am - 1pm. Max.Marks: 50

- 1. State the Gram-Schmidt orthogonalization process in \mathbb{R}^n . (2)
- 2. Consider the matrix $A = \begin{pmatrix} 2 & -6 & 8 \\ 5 & 4 & -3 \\ 3 & 1 & 2 \end{pmatrix}$. Obtain the *LU* decomposition of *A* and use it to solve the system Ax = b, where $b = \begin{pmatrix} 24 \\ 2 \\ 16 \end{pmatrix}$. (3+3)

3. Let

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- (a) Find orthonormal vectors $u^{(1)}, u^{(2)}, u^{(3)}$ in \mathbb{R}^4 such that the subspace spanned by them is the subspace spanned by the columns of A. (5)
- (b) Find a 4×3 real matrix Q and a 3×3 matrix R such that $Q^t Q = I$ and R is an upper triangular matrix with positive diagonal elements, satisfying A = QR. (3)
- 4. Suppose A is a real $m \times n$ matrix of rank n and define $P = A(A^t A)^{-1} A^t$.
 - (a) Show that im(P) = im(A) and $ker(P) = ker(A^t)$. (2)
 - (b) Show that P is an orthogonal projection.
- 5. Suppose A is a non-negative, irreducible matrix of order n. Show that the matrix $(I+A)^{n-1}$ is a positive matrix. (2)
- 6. Let $y_0 = 0$ and $z_0 = 5$. Define for k = 0, 1, 2, ...

$$y_{k+1} = 0.8y_k + 0.3z_k$$
$$z_{k+1} = 0.2y_k + 0.7z_k$$

Find the limits of y_k and z_k as $k \to \infty$.

(4)

(2)

7. Reduce the following minimization problem to the standard form the LPP.

minimize
$$|x| + |y| + |z|$$

subject to $x + y \le 1$ and $2x + z = 3$.
(2)

8. Consider the following LPP:

maximize $c^t x$ subject to $Ax \leq b, x \geq 0$.

- (a) Write down the corresponding dual problem. (1)
- (b) In the above set up, state and prove the weak duality theorem. (1+1)
- 9. State the Minkowski-Farkas Lemma and prove it using the duality theorem of LP. (1+2)
- 10. (a) Define an extreme point of a convex set in \mathbb{R}^n . (1)
 - (b) Define a feasible solution and a basic feasible solution of a set of constraints $Ax = b, x \ge 0$, where A is a real $m \times n$ matrix with rank m. (1+1)
 - (c) For the above set of constraints, show that a feasible solution is a basic feasible solution if and only if it is an extreme point of the feasible set. (3+3)
- 11. Find a solution of the following LPP using simplex method:

minimize $5x_1 - 8x_2 - 3x_3$

subject to

$$2x_{1} + 5x_{2} - x_{3} \leq 1$$

$$-3x_{1} - 8x_{2} + 2x_{3} \leq 4$$

$$-2x_{1} - 12x_{2} + 3x_{3} \leq 9$$

$$x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0.$$
(5)

(2)

12. Using the theorem of the alternative, show that the following system

$$\left(\begin{array}{rrr}1 & 3 & -5\\1 & -4 & -7\end{array}\right)x = \left(\begin{array}{r}2\\3\end{array}\right),$$

does not have a non-negative solution.

 $\mathbf{2}$